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Abstract: Background: Autism Spectrum Disorder (ASD) is characterized by numerous co-
morbidities including eating problems, the most common of which is food selectivity (FS), and
gastrointestinal (GI) dysfunction, which often occurs concurrently with eating problems.

Aim: To investigate the relationships between food selectivity, GI symptoms and various meta-
bolic pathways in children with ASD using parental report and quantitative urine organic acid test-

ing.

Methods: An anonymous review of the clinical charts of 68 children aged 1.6 to 11 with a diagno-
sis of ASD was performed. Demographic and health information from intake forms and urine or-
ganic acid test reports were analyzed; descriptive statistics and Chi square tests were conducted.

Results: Parents of 60% of children reported food selectivity in their child and parents of 69% of
children reported GI symptoms. 47% of parents reported both food selectivity and GI symptoms in
their child. 90% of the participants were found to have at least one elevated GI fungal metabolite,
and 30% or more had elevated levels of 5 different GI bacterial metabolites. No significant corre-
lation between food selectivity and GI symptoms was identified.

Conclusion: This study highlights important trends among FS, GI symptoms and select organic
acid metabolites; further studies of the clinical significance of these metabolites and their effect on
the behavior, sensory experiences and physical symptoms among children with ASD are sug-

gested.

Keywords: Food selectivity, urine organic acids, gastrointestinal dysfunction, ASD.

1. INTRODUCTION

Autism Spectrum Disorder (ASD) is a clinically hetero-
geneous, multi-system disorder, characterized by social,
communication, and behavioral impairments. Once consid-
ered a genetically-based, hardwired brain disorder, studies
have begun to show that ASD is in fact a whole-body, bio-
logical condition, affected by both genetic predisposition and
environmental factors [1, 2]. ASD is characterized by nu-
merous comorbidities, including sleep problems [3], seizures
and epilepsy [4], ADHD [5], obsessive-compulsive disorder
[3], anxiety disorders [3], and gastrointestinal dysfunction
(GID) [6]. Children with ASD also commonly experience
eating and feeding problems, with many suffering from some
manifestation of food selectivity (FS) or picky eating [7, 8].
Close to 70% of children with ASD are reported to be selec-
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tive eaters [9], a term which may refer to frequent refusals of
particular foods, limited repertoires of foods, excessive in-
take of a few foods such as carbohydrates, and selective in-
take of certain foods, such as fruits and vegetables [10].

The eating and feeding problems seen in ASD are multi-
factorial and include sensory [10], social [11], behavioral [8,
9], physiological [12], cognitive [13] and medical [6] origins.
Excessive adherence to routines and rituals and resistance to
change, hypo or hyper-reactivity to sensory input, or unusual
interest in sensory aspects of the environment and repetitive
and restricted behaviors and interests (RRBI) are all
commonly believed to contribute to FS [8]. According
to Ledford and Gast (2006), FS is frequently described by
type and/or texture, however, selectivity by presenta-
tion/appearance, taste, color, smell and temperature is also
common. Children with ASD often display insistence on
specific methods of food preparation, food types, and meal-
time rules [14, 15], as is characteristic of higher order repeti-
tive behaviors [16-18]. In addition, many children with ASD
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who are food selective often exhibit a preference for
starches, snack foods, and processed foods and display a lack
of willingness to eat fruits, vegetables, and proteins. In one
study of 30 children with ASD, vegetables were the most
commonly rejected food based on parental report; increased
FS was also found to be correlated with more problem be-
haviors [19].

Although it is a frequent target for intervention due to
concern over dietary balance, the nature of the relationship
of FS to nutritional status is still unclear. Research has
shown that children with ASD consume less calories, includ-
ing less protein and more carbohydrates than typically de-
veloping children and have disturbed eating habits [10, 20].
However, studies on the impact of these eating problems on
intake of micronutrients have yielded mixed results; for ex-
ample, low levels of vitamins A and K, as well as higher
levels of vitamin B6 and E have been noted, as have low
intake of calcium, fiber, iron, and vitamins E and D [21].

Considering the multifactorial nature of FS, there is in-
creasing evidence that for many children with ASD, its ori-
gin may also be organic [12]. Children with ASD have been
found to have increased incidence of functional and meta-
bolic disturbances such as an altered gut microbiome [22],
higher levels of oxidative stress [1, 23-25], altered methyla-
tion and sulfur metabolism, and changes in levels of amino
acids, neurotransmitters, vitamin and mineral markers [26];
alterations in cellular and neuronal development, and abnor-
mal patterns of certain proteins/peptides, levels of neuro-
transmitters, hormones and markers related to an upregulated
immune response have also been identified [27].

Recent literature shows that the prevalence of gastroin-
testinal (GI) symptoms in children with ASD ranges from 9-
70% and higher [6]; children with ASD also have higher
rates of GID than typically developing children [28]. A re-
cent meta-analysis of 15 studies found that children with
ASD have higher rates of diarrhea, constipation and abdomi-
nal pain than comparison groups; greater incidence of mega-
rectum, resulting from muscle dysfunction or fecal impac-
tion, has also been found among children with ASD, com-
pared to controls [29]. In addition, in children with ASD,
abnormalities of the GI tissue and increased intestinal per-
meability have been noted [30, 31] as has damage to the tight
intercellular junctions of gut mucosa [32].

Furthermore, pathogenic bacterial strains such as Clos-
tridia tetani, known to cause illness and produce neurotoxins
that may be absorbed from the GI tract, and some strains of
candida, have been identified in greater numbers among
autistic children [33-36]. Lower levels of beneficial bacterial
strains of Bifidobacteria have also been reported [36]. Re-
search has shown that yeast and pathogenic bacterial over-
growth, a common occurrence after the use of oral antibiot-
ics [37, 38] can also, under certain metabolic conditions be-
come a pathogen, secreting toxins that can damage the cen-
tral nervous system [39].

ASD severity and unusual sleep, oppositional behavior
and rigid-compulsive behaviors have all been found to be
significantly associated with GI problems among children
with ASD [40-42]. In addition, symptoms such as hostility,
slurred speech and ataxia have been associated with altera-
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tions in the GI microbiome [34]. Treatment with antibiotics
and antifungals has been linked with marked decreases in
such symptoms [1-3] and the use of antifungal medications
such as Nystatin, has also been shown to lead to an im-
provement in ASD symptoms in some studies [43].

Indeed, the presence of GI imbalance is now known to
affect the health of the brain, with studies on the “gut-brain
connection” increasingly reported in the literature [4, 5].
Mechanisms involving the peripheral and central nervous
systems, as well as behavior and immunological abnormali-
ties in the GI tract have been proposed to influence ASD
symptoms [44]. Although a number of causal and therapeutic
hypotheses involve the GI tract, the presence of a clear GI
pathophysiology specific to ASD has yet to be identified, yet
elevated risk for GID in this population remains a critical
clinical issue [28].

A variety of diagnostic tests including urinary organic ac-
ids can be used to assess the presence of problems with GI
function, cellular energy production, mitochondrial metabo-
lism, neurotransmitter metabolism, and vitamin status [45].
Urinary testing offers benefits including early diagnosis of
metabolic disorders and neurological disease and it is simple,
sensitive and non-invasive [46, 47]. Accumulations of cer-
tain metabolites, such as organic acids in the urine, can shed
light on the function of numerous biochemical pathways and
indicate the presence of metabolic dysfunction, nutrient in-
sufficiencies, microbial overgrowth and more [48]. In a 2011
study, significant differences were found between the urine
organic acids of 35 children with ASD and 36 neurotypical
children, indicating the potential utility of organic acid test-
ing in assessing nutritional and biochemical abnormalities in
these children, and researchers have begun to explore their
potential use as ASD biomarkers [6].

2. STUDY RATIONALE

Research has highlighted the occurrence of altered meta-
bolic pathways in ASD as well as co-morbidities such as
GID, which has been found to occur concurrently with eating
problems such as FS [12]. Though the unique patterns of
organic acids in the urine of children with ASD have been
studied, to our knowledge, the relationship between these
metabolites, FS and GI symptoms has yet to be explored. In
a recent review, eating and feeding problems and GID were
found to be more prevalent among ASD groups than non-
ASD groups, with FS found to be the most common type of
eating problem among children with ASD [12, 49]. Identify-
ing biomarkers of ASD and their relationship with eating
patterns may not only play an important role in understand-
ing the etiology of this disorder, but may also contribute to
the development of interventions that might improve the
health and well-being of children with ASD. Therefore, the
goal of this study was to explore the relationships between
FS, GI symptoms and urine organic acids in children with
ASD.

3. PROCEDURE

Ethical approval was received from the University Ethi-
cal Board. The health records of children whose parents
sought a nutritional consultation for the purpose of seeking
to optimize their child’s nutrition were anonymously re-
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viewed for this study. Research data included demographic
and health information from intake forms completed prior to
first consultation and the urine organic acid test reports from
the clinical charts of children whose families elected to per-
form this testing. Urine testing was performed using an at
home collection and shipment via courier to a medical labo-
ratory and the same laboratory was used for all testing.

4. METHODS

An anonymous review of the clinical charts of 68 chil-
dren with a diagnosis of Autism, ASD, and PDD-NOS per-
formed. Participant ages ranged from 1.6-11 (mean age =
3.9, SD = 1.4) years (59 males and 9 females). All children
were diagnosed by a developmental physician (pediatrician,
neurologist) or a psychologist or psychiatrist, and met the
Diagnostic and Statistical Manual of Mental Disorders
(Fourth edition, Text revision) criteria for ASD. Children
with typical development or with any delay other than ASD
related to genetic disorders and severe medical problems
were not included in this study.

5. TOOLS

1. Quantitative urine organic acids test, including the fol-
lowing metabolites/organic acids: citramalic, 5-hydroxy-
methyl 2-furoic, 3-oxoglutaric, furan-2,5-dicarboxylic, fur-
ancarbonylglycine, tartaric, arabinose, carboxycitric, tricar-
ballyic, 2-hydroxyphenylacetic, 4-hydroxyphenylacetic,
4-hydroxybenzoic, 4-hydroxyhippuric, hippuric, 3-indo-
leacetic, succinic, 3-(3-hydroxyphenyl)-3-hydroxypropionic
(HPHPA), 3,5-dihydroxyphenylpropionoic acid (DHPPA),
glyceric, oxalic, lactic, pyruvic, 2-hydroxybutyric, fumaric,
malic, 2-oxoglutaric, aconitic, citric, homovanillic (HVA),
vanillylmandelic (VMA), HVA to VMA ratio (HVA/VMA),
5-hydroxyindoleacetic (5-HIAA), quinolinic, kynurenic,
quinolinic-5-hydroxyindolacetic acid (HIAA) ratio, uracil,
thymine, 3-hydroxybutyric, acetoacetic, 4-hydroxybutyric,
methysuccinic, adipic, ethylmalonic, suberic, sebacic, meth-
ylmalonic, pyridoxic, pantothenic, glutaric acid, methylcitric,
pyroglutamic, orotic, 2-hydroxyhippuric. All testing was
performed at the same laboratory. Organic acids found to be
elevated in 25% or more of the participants are addressed in
the results and discussion.

2. An initial intake form and initial consultation which
includes general questions regarding GI symptoms (presence
of abnormal symptoms such as diarrhea, constipation, very
soft stools, visible undigested food in stool) and questions
regarding eating problems. A child was considered to be
food selective if the parents reported several of the follow-
ing: over-selectivity, aversions to specific textures, colors,
smells, and temperatures or rigidity with respect to brands of
foods, restricted intake to certain food groups such as high
protein, high starch or those with certain sensory aspects
such as crunchy or sweet.

6. DATA ANALYSIS

Descriptive statistics were used to illustrate the percent-
age of participants whose results were above the normal
range for each metabolite. Metabolites for which greater than
25% of the participants had elevated levels are reported in
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this study. Chi-squared tests were used to assess the correla-
tions between elevated metabolites and parental report of FS
and GI symptoms and a post hoc Bonferroni correction using
a revised p value of 0.01 was performed in order to correct
for multiple comparisons.

7. RESULTS

7.1. Organic Acid Metabolites

Of the 53 metabolites assessed, all 68 participants had at
least one elevated metabolite, and up to 24 elevated metabo-
lites. The mean number of elevated metabolites was 9.5 (SD
=5). 25% or more of the children had 15 elevated metabo-
lites and between 10-24% of the population had 20 elevated
metabolites. The remaining 18 metabolites were elevated in
under 10% of the study population (Table 1).

Table 1. Number of children with elevated levels of organic
acids.

N
Arabinose 55 (80.9)
Kynurenic 18 (58.1)

4-Hydroxyhippuric 18 (48.6)
3-oxoglutaric 30 (44.1)
Oxalic 29 (43.3)
Ethylmalonic acid 22 (38.6)
Pyruvic 25(37.3)
4-Hydroxybenzoic 17 (36.2)
HPHPA 21 (35.0)
Citric 22 (32.4)
Hippuric 12 (31.6)
Quinolinic 14 (29.8)
VMA 18 (28.1)
Succinic 15(27.3)
Suberic acid 18 (26.9)
Methylmalonic acid 16 (23.9)
4-Hydroxyphenylacetic 16 (23.5)
Quinolinic-5HIAA ratio 11(23.4)
Uracil 15(22.4)
Glutaric acid 14 (20.9)
Carboxycitric 14 (20.6)
Pantothenic acid 11 (18.6)
2-Hydroxyhippuric 12 (17.9)

Table 1. Contd...
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Citramalic 12 (17.6)
Aconitic 6 (17.6)
Pyridoxic acid 11 (16.7)
Methysuccinic 5(15.2)
Orotic 10 (14.9)
Furan-25-dicarboxylic 10 (14.7)
Pyroglutamic 5(14.7)
Adipic 9(13.4)
5-Hydroxymethyl-2-furoic 9(13.2)
4-Hydroxybutyric 7(10.8)
5-Hydroxyindoleacetic 7(10.4)
Acetoacetic 6 (10.3)
3-Indoleacetic 4(9.8)
2-Hydroxybutyric 309.1)
HVA 6(9)
Furancarbonylglycine 6 (8.8)
Tartaric 6 (8.8)
Glyceric 5(8.8)
DHPPA 3(8.6)
Lactic 4(6)
HVA/VMA 3(6)
3Hydroxybutyric 4 (6)
2-oxoglutaric 4(5.9)
Thymine 3(5.3)
2-Hydroxyphenylacetic 2(4.7)
Fumaric 3(4.5)
Tricarballyic 1(3.8)
Methylcitric 2 (3.6)
Sebacic 1(3)
Malic 1(2)

(Number as percentage is listed in parentheses).

The following 15 metabolites were elevated among 25%
of more of the participants: arabinose, kynurenic acid, 4-
hydroxyhippuric acid, 3-oxoglutaric acid, oxalic acid, ethyl-
malonic acid, pyruvic acid, 4-hydroxybenzoic acid, HPHPA,
citric acid, hippuric acid, quinolinic acid, VMA, succinic
acid and suberic acid.

7.2. FS and GI Symptoms

Parents of 60% of children reported FS in their child and
parents of 69% of children reported GI symptoms in their
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child. Seventy-eight percent of parents who reported FS in
their child also reported GI symptoms; in contrast, 59% of
parents who did not report FS reported GI symptoms. Of the
68 children assessed, 24% reported both FS and GI symp-
toms. No statistically significant correlation was found be-
tween parent-reported FS and GI symptoms. Ninety percent
of the participants studied were found to have at least one
elevated GI fungal metabolite, and 30% or more had ele-
vated levels of 5 different GI bacterial metabolites.

Of the 15 metabolites which were elevated among 25%
or more of the participants, 12 of them were also elevated
among 40% or more of children reported to have FS and 8 of
them were elevated among 40% or more of children reported
to have GI symptoms. Six of those metabolites were elevated
among 40% or more of children reported to have both FS
and GI symptoms (Table 2).

7.3. FS and GI Correlations

Correlations between 5 organic acids and FS were ini-
tially identified, which included vanillylmandelic acid
(VMA), suberic acid, 3-oxoglutaric acid, arabinose and ox-
alates. However, after a post-hoc Bonferroni correction was
carried out, the correlations did not remain significant at the
new p value of 0.01. Likewise, the correlation identified be-
tween an organic acid, carboxycitric acid and gastrointestinal
symptoms did not remain significant at the p value of 0.01.

8. DISCUSSION

Food selectivity is a common co-morbidity of children
with ASD [7, 8] and has previously been shown to be related
to RRBIs, with origins in sensory, behavioral and social im-
pairments. However, this study and previous studies indicate
that for many children, eating and feeding problems may
also be organic, with many cases co-occurring with GID.

In this pilot study, which explored the relationships be-
tween parent-reported FS, GI symptoms and urine organic
acids, FS was reported by 60% of parents and GI symptoms
were reported by 69%. Furthermore, 47% of parents reported
both FS and GI symptoms in their children. Though no sta-
tistically significant differences were found between the FS
group and the no FS group in terms of GI symptoms, the
parents of children with FS reported a higher rate of these
problems, suggesting that FS may be related to GI symptoms
in some children [49].

The descriptive statistics of the urinary metabolites reveal
important trends relating food sensitivity and metabolic
imbalance. Of the 53 metabolites tested, 15 were elevated in
25% or more of the children studied and 6 of the metabolites
were associated with gastrointestinal bacteria and fungi
(arabinose, 3-oxoglutaric, 4-hydroxyhippuric, 4-hydroxybe-
nzoic, HPHPA, hippuric acids) [38, 45, 50, 51]. Ninety per-
cent of the participants were found to have at least one ele-
vated fungal metabolite, and 30% or more had elevated lev-
els of 5 different bacterial metabolites. One of these, arabi-
nose was elevated in the greatest number of children
(80.9%), and was also identified in 73% among those who
reported FS, 76.6% of those who reported GI symptoms and
72% of those who reported both FS and GI symptoms.
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Table 2. Organic acids elevated among 25% or more participants & occurrence with FS & GI.
Metabolites Category FS% G1% FS & GI%
Arabinose Yeast & Fungal 73.2 76.6 71.9
3-oxoglutaric Yeast & Fungal 34.1 40.4 37.5
4-hydroxyhippuric Bacterial 57.7 50 57.9
4-hydroxybenzoic Bacterial 37.5 38.2 37.5
HPHPA Bacterial 37.8 35 39.3
Hippuric acid Bacterial 30.8 37 31.6
VMA Neurotransmitter 17.9 233 13.3
Kynurenic Neurotransmitter 53.8 45 60
Quinolinic Neurotransmitter 28.1 23.5 20.8
Oxalic Oxalates 333 40 333
Ethylmalonic Fatty acids 51.5 41 53.8
Suberic Fatty acids 17.5 26.1 16.1
Pyruvic Energy production/mitochondria 47.5 435 51.6
Citric Energy production/mitochondria 38.5 40 40
Succinic Energy production/mitochondria 23.5 26.3 259

Arabinose is a close relative of arabinitol, a yeast alcohol,
and has been previously proposed as a biomarker for Can-
didiasis [52]. Elevated levels have been found in various
clinical populations, including patients with schizophrenia,
women with vulvovaginitis, in children with conduct disor-
ders and among children with ASD [38, 53]. D-arabinitol
and the D-/L-arabinitol ratio have been more widely dis-
cussed in the literature as the major characteristic metabo-
lites of most Candida species [54] and the D-/L-arabinitol
ratio specifically has been shown to be a sensitive and rapid
test for invasive candidiasis [55, 56]. Arabinitol has also
been found to be three times higher among autistic children
compared to healthy children [57] and both probiotic sup-
plementation [58] and treatment with anti-fungal medication
have both been shown to reduce elevated levels [54].

In addition, 3-oxoglutaric acid was also elevated among
34% of children whose parents reported FS, 40.4% of those
who reported GI symptoms and 37.5% among those who
reported both. 3-oxoglutaric acid was previously identified in
a small study in which two boys with ASD with elevated
levels responded to treatment with Nystatin, an anti-fungal
drug [38], indicating, like arabinose, a possible relationship
with GI dysbiosis. It has been found to play a role in detoxi-
fication of ammonia in brain [59-61] and is also considered a
Krebs cycle intermediate is a precursor to the excitatory neu-
rotransmitter glutamate, which may also be decarboxylated
(in the presence of vitamin B6) into the chief inhibitory neu-
rotransmitter, GABA. GABAergic dysfunction has been im-
plicated in anxiety, epilepsy and learning impairment,
amongst other conditions. Numerous studies have identified
abnormalities in GABAergic neurons and synapses in chil-
dren with ASD [62] with polymorphisms in GABA receptors
having been identified among children with ASD [63]. Glu-

tamate excitotoxicity based on a much higher glutamate con-
centration in autistic patients than control subjects, and
higher GABA and lower glutamate/GABA levels have been
recorded in autistic patients, indicating possible imbalances
between excitatory and inhibitory neurotransmission [64]. A
recent 2016 study found sensorimotor GABA levels to be
significantly reduced in children with autism compared to
healthy controls which the authors noted might be predictive
of abnormal tactile information processing in ASD [65].

Although the relationship between intestinal fungal over-
growth and selective eating has not been discussed in the
literature, the impact of diet on the gut microbial population
is widely recognized [66, 67]. To our knowledge, this is the
first pilot study to identify elevation in arabinose among over
70% of children with reported FS and in 3-oxoglutaric acid
among 34% of children with reported FS and further re-
search is suggested in order to shed further light on its poten-
tial relationship with FS mechanisms, including its potential
role in restriction to certain foods, GI discomfort and influ-
ence on food choices.

Four different metabolites related to bacterial over-
growth, 4-hydroxyhippuric acid, 4-hydroxybenzoic acid,
HPHPA and hippuric acid, were found to be elevated in 30%
or more of children with both FS and GI symptoms. Children
with ASD have been repeatedly shown to have a signifi-
cantly greater number of bacterial species in their stool sam-
ples, along with grossly abnormal bacterial flora [35, 68]. A
growing body of research has indicated that children with
ASD have lower levels of both of Bifidobacteria and Lacto-
bacillus species [36, 68, 69] and greater numbers of GI
pathogens, including high levels of bacterial taxa belonging
to Escherichia/Shigella and Clostridium and Candida spe-
cies [36, 70, 71]. In addition, studies of fecal samples of chil-
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children with ASD have identified the presence of abnormal
amounts of Clostridia, Bacterioides and Desulfiovibrio, as
well as decreased amounts of Bifidobacteria [40]. In a study
of 58 children with ASD and 39 healthy, typical controls,
children with ASD were found to have much lower levels of
total short chain fatty acids, less Bifidobacteria and higher
amounts of Lactobacilli [36]. The same study found GI
symptoms to be strongly correlated with autism severity.
One of the 4 elevated bacterial metabolites, 3-(3-
hydroxyphenyl)-3-hydroxyproprionic acid or HPHPA, is an
abnormal metabolite of Clostridia and has also been found to
be elevated in the urine of children with autism, compared to
matched controls for age and sex. One study found the
marker to decrease following treatment with Metronidazole,
indicating the production of the compound by one or more
anaerobic bacteria [38]. As with the fungal metabolites, the
high percentages of GI symptoms and FS among children
with elevated bacterial metabolites identified in this pilot
warrants a deeper exploration of the relationship between
these co-morbidities.

Among those with elevated levels of VMA 18% had FS
and 23% had GI symptoms. VMA is a metabolite of the
catecholamines epinephrine (adrenaline) and norepinephrine,
released into the bloodstream in response to physical or emo-
tional stress. Indeed, dysfunction in dopaminergic signaling
has been discussed as an underlying cause of different neu-
ropsychiatric disorders, including ASD [72, 73]. While sev-
eral studies have identified significant differences in the uri-
nary levels of HVA and VMA of autistic and healthy chil-
dren [74], others have not identified abnormal levels among
this population [75].

Abnormalities in the dopamine-based modulation of
frontal systems have also been explored as a contributor to
the development of executive dysfunction in ASD [76]. Ex-
ecutive cognitive function encompasses the skills required to
carry out goal-directed activity, and is comprised of higher
order processes related to self-regulation and shown to pre-
dict a range of life outcomes including health behaviors and
academic performance [7]. As a result, the executive dys-
function seen in ASD has been suggested to influence eating
behavior as the lack of ability to plan and control behavior
may cause a ‘locking’ into a certain types of food or brands
and stress surrounding food-related changes [8]. The snack
foods commonly consumed by children with ASD may be
extremely rewarding for them, when consumed, and place a
high emotional and motivational drive upon immature execu-
tive cognitive systems, making it difficult to inhibit these
highly desirable foods [9]. Such deficits in inhibitory control
have been associated with characteristics of FS in previous
studies, such as poorer eating behavior, and consumption of
unhealthy foods [77]. However, the specific relationship
between VMA and FS warrants further exploration.

Both kynurenic and quinolinic acid, both of which have
tryptophan as a precursor, were found to be elevated among
25% or more participants, with kynurenic acid elevated
among 53.8% of those reporting FS, 45% of those who re-
ported GI symptoms and 60% of children with both FS and
GI symptoms. The kynurenine pathway is the most trypto-
phan-consuming pathway and it can result in the production
of numerous metabolites, including NAD, kynurenic acid,
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quinolinic acid and picolinic acid. Elevations in kynurenic
acid have been reported to cause dysregulation of gut motil-
ity [78] and may also influence important neurophysiological
and neuropathological processes and high levels have been
identified in human urine in certain metabolic disorders, such
as marked pyridoxine deficiency. In addition, quinolinic acid
has previously been found to be elevated among children
with ASD in a small study of Omani children also found
increased production of the downstream metabolite, quino-
linic acid, which is capable of enhancing glutamatergic neu-
rotransmission [79] and Gevi et al found children with ASD
preferentially transform tryptophan into xanthurenic acid and
quinolinic acid (two catabolites of the kynurenine pathway),
at the expense of kynurenic acid and especially of melatonin
[80]. More research is needed to further understand potential
relationships.

This study also found 2 elevated fatty acid metabolites,
suberic acid and ethylmalonic acid, elevated among 25% or
more of the participants. Among those reported to be food
selective, 17.5% had elevated suberic acid, as did 26.1% who
reported GI symptoms and 16% who reported both. Elevated
ethylmalonic acid was identified among 51.5% of children
with FS, 41% of participants with GI symptoms and 53.8%
who reported both. The presence of extremely elevated lev-
els of suberic acid has been found in the urine of patients
with fatty acid oxidation disorders, a broad classification for
genetic disorders that result from an inability of the body to
produce or utilize an enzyme required to oxidize fatty acids
to produce energy [81]. Among the ASD population, signifi-
cant differences in suberic acid levels between children with
ASD and neurotypical controls were previously reported in a
2010 study [6] and various forms of abnormal fatty acid me-
tabolism among children with ASD have also been found in
other research [82, 83]. There is also evidence that highlights
the abnormalities of fatty acid and membrane phospholipid
metabolism present across a range of neurodevelopmental
disorders [84]. Supplementation with riboflavin (vitamin B2)
and carnitine has been proposed as a treatment for elevated
suberic acid, however, its relationship with FS was not pre-
viously reported and therefore specifically warrants further
exploration [6].

Among those with elevated levels of oxalates, 33% were
food selective, 40% had GI symptoms, and 33.3% reported
both. A component of kidney stones as a calcium precipitate,
oxalate and its acid form, oxalic acid is organic acid pro-
duced primarily from three sources: the diet, fungi [85-87],
and a byproduct of human metabolism [88]. Oxalate metabo-
lism is partially dependent on a strain of GI bacteria, Ox-
alobacter formigenes, an oxalate-degrading anaerobic bacte-
rium present in the large intestine and the primary source for
the Oxalyl-CoA decarboxylase enzyme, without which, the
GI tract cannot degrade dietary oxalates. When not properly
degraded, oxalates may become absorbed or excreted via the
kidney. Hyper oxalemia and hyperoxaluria may be involved
in the pathogenesis of ASD in some children [51, 89]. Proper
breakdown of oxalates is partially dependent on a healthy
microbiome [90], which many children with ASD lack; it has
also been hypothesized that excess presence of oxalate may
lead to a deposition of crystals in the GI tissues, which may
contribute to increased intestinal permeability [91]. The spe-
cific connection between FS and high oxalate foods has yet
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to be explored, though possible mechanisms may include
increased food allergies and sensitivities, and subsequent FS
resulting from increased intestinal permeability or “leaky gut
[92-94].”

Finally, over 50% of children with elevated pyruvate,
40% with elevated citric acid and over 25% with elevated
succinic acid had both FS and GI symptoms. All three of
these metabolites are intermediates of the Krebs cycle, which
occurs inside the mitochondria. Numerous studies have
shown a large number of children with ASD with elevations
in these three metabolites in blood, urine and cerebrospinal
fluid, which commonly indicate dysfunction of the mito-
chondria [95]. Frye et al. reported that GI disturbances are
common in individuals with mitochondrial disorders and
reported to be highly prevalent in individuals with ASD and
mitochondrial disease [96]. The effect of mitochondrial dys-
function on GI function can also have a direct impact on
eating and feeding, affecting gut motility and manifesting as
gastroesophageal reflux, slow gastric emptying with bloating
and pain, intestinal dysmotility with the same symptoms, or
pseudo-obstruction, as well as constipation with fullness,
pain or gas. Gut dysmotility likely occurs at least in part be-
cause of autonomic dysfunction and/or bowel smooth muscle
weakness [97]. Any and all of these may also potentially
manifest as FS, thus further exploration and larger studies
are again, suggested.

This study has several important limitations. First, the
number of charts studied was moderate therefore, further
research should study larger populations of children and a
control group for comparison. The chart review methodology
and use of general parental report relies on information that
is prone to bias. Specifically, the reports of both FS and GI
problems by parents is often problematic since definitions of
what constitutes both terms may vary [6]. Since the current
study was retrospective, it did not allow for the inclusion of a
control group, nor was there the possibility of obtaining ad-
ditional data regarding food selectivity, however the results
serve as a bridge to future studies in which will expand upon
the available data. In addition, the retrospective nature of this
study did not allow the gathering of additional, important
data about types and patterns of selectivity. Finally, the lim-
ited literature on the urine organic acid metabolites and rela-
tive ambiguity regarding in the origin and significance of
excreted compounds limits the breadth of the discussion. All
of these call for further research, which should also include
control groups for comparison.

The strengths of the pilot study include the exploration of
an under-studied and important topic which make a valuable
contribution to the literature.

CONCLUSION

This pilot study highlights important trends among FS,
GI symptoms and select organic acid metabolites. Together
with altered metabolic pathways related to the GI tract, the
central nervous system, and fatty acid metabolism, the re-
sults warrant exploring whether FS may also have organic
origins in addition to representing a stage of RRBI. Though
no significant correlations were identified between FS, GI
symptoms and organic acid metabolites, in light of these
interesting trends, further studies of the clinical significance
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of these metabolites and their effect on the behavior, sensory
experiences and physical symptoms among children with
ASD are suggested.
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